Giant vesicles as models to study the interactions between membranes and proteins.

نویسندگان

  • A Fischer
  • T Oberholzer
  • P L Luisi
چکیده

The interaction between polypeptides and membranes is a fundamental aspect of cell biochemistry. Liposomes have been used in this context as in vitro systems to study such interactions. We present here the case of giant vesicles (GVs), which, due to their size (radius larger than 10 microns), mimic more closely the situation observed in cell membranes and furthermore permit to study protein-membrane interactions by direct optical monitoring. It is shown that GVs formed from 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine by electroformation are permeable to certain low molecular weight molecules such as the nucleic acid dye YO-PRO-1 and fluorescein diphosphate whereas conventional liposomes (large or small unilamellar liposomes) are not. In addition, it is shown that non-membrane proteins, such as DNases or RNases, added to the selected GVs from the outside, are able to convert their substrate, which is strictly localized on the internal side of the membrane. This effect is only seen in GVs (also when they are removed from the original electroformation environment) and is absent in conventional liposomes. The fact that these effects are only present in GVs obtained by electroformation and not in conventional small liposomes is taken as an indication that certain physico-chemical properties of the bilayer are affected by the membrane curvature, although the mechanism underlying such differences could not be established as yet.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Lipidic composite vesicles based on poly(NIPAM), chitosan or hyaluronan: behaviour under stresses

Giant Unilamellar Vesicles (GUVs) consisting in self-closed lipid bilayers of 0.5-100 µm diameter are considered as oversimplified models of cells because of their biological membrane and micrometric size while Large Unilamellar Vesicles (LUVs) of 100-500 nm diameter have applications in drug delivery. To improve structural and mechanical properties of these vesicles, we have developed two cate...

متن کامل

Lipidic composite vesicles based on poly(NIPAM), chitosan or hyaluronan: behaviour under stresses

Giant Unilamellar Vesicles (GUVs) consisting in self-closed lipid bilayers of 0.5-100 µm diameter are considered as oversimplified models of cells because of their biological membrane and micrometric size while Large Unilamellar Vesicles (LUVs) of 100-500 nm diameter have applications in drug delivery. To improve structural and mechanical properties of these vesicles, we have developed two cate...

متن کامل

Correlation Between Immunohistochemical Profile of Giant Cell Granuloma with Pathogenesis and Biologic Behavior: A Review Article

Abstract: Background and Aim: Giant cell Granulomas (central and peripheral) are two fairly common lesions of the oral cavity with uncertain etiology and pathogenesis. As well, the reason for their different biologic behavior is not well understood yet. This study aimed to review the immunohistochemical profile of giant cell granuloma and its correlation with pathogenesis and biologic behavior....

متن کامل

Order of lipid phases in model and plasma membranes.

Lipid rafts are nanoscopic assemblies of sphingolipids, cholesterol, and specific membrane proteins that contribute to lateral heterogeneity in eukaryotic membranes. Separation of artificial membranes into liquid-ordered (Lo) and liquid-disordered phases is regarded as a common model for this compartmentalization. However, tight lipid packing in Lo phases seems to conflict with efficient partit...

متن کامل

Interaction of giant phospholipid vesicles containing cardiolipin and cholesterol with beta2-glycoprotein-I and anti-beta2-glycoprotein-I antibodies.

Antiphospholipid syndrome is characterized with thrombotic events and/or pregnancy morbidity and antiphospholipid antibodies (aPL). The most common antigen for aPL is beta2-glycoprotein-I (beta(2)GPI), a plasma protein binding to negatively charged phospholipids. The influence of aPL on coagulation is not well understood. Giant phospholipid vesicles (GPVs) are a convenient in vitro system for s...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Biochimica et biophysica acta

دوره 1467 1  شماره 

صفحات  -

تاریخ انتشار 2000